Stat 201: Introduction to Statistics

Standard 13: Probability Conditional Probability

Probability Rules

- Conditional Probabilities
- The probability of A given B :

$$
P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}=\frac{P(A \cap B)}{P(B)}=
$$

Conditional Probabilities

First Choice
Second Choice

Walkthrough

- Sampling with or without Replacement*
- https://www.youtube.com/watch?v=uKTjh-6PFjo
- Conditional Probabilities*
- https://www.youtube.com/watch?v=JGeTcRfKgBo

Example: Probability

廿Velociraptor safe windows?	Survived Velociraptor Attacks (S)	Devoured by Velociraptors (D)	Total
Yes (Y)	412,368	510	$\mathbf{4 1 2 , 8 7 8}$
No (N)	16,001	162,527	178,528
Total	428,369	163,037	$\mathbf{5 9 1 , 4 0 6}$

- The probability a randomly selected participant had Velociraptor safe windows:

$$
\begin{aligned}
\widehat{P(Y)}= & \frac{\text { number of } Y \text { observations }}{\text { total number of observations }}= \\
& \frac{412,878}{591,406}=.69812954
\end{aligned}
$$

Example: Probability

चVelociraptor safe windows?	Survived Velociraptor Attacks (S)	Devoured by Velociraptors (D)	Total
Yes (Y)	412,368	510	412,878
No (N)	16,001	162,527	178,528
Total	428,369	163,037	591,406

- The probability a randomly selected participant survived the Velociraptor attacks and had Velociraptor safe windows:
- $P(\widehat{S \cap Y})=\frac{\text { number of } S \& Y \text { observations }}{\text { total number of observations }}$

$$
=\frac{412,368}{591,406}=.69726719
$$

Example: Probability

ปVelociraptor safe windows?	Survived Velociraptor Attacks (S)	Devoured by Velociraptors (D)	Total
Yes (Y)	412,368	510	412,878
No (N)	16,001	162,527	178,528
Total	428,369	163,037	591,406

- The probability a randomly selected participant survived the Velociraptor attacks given they had Velociraptor safe windows
- Let's try the formula:
- $\widehat{P(S \mid Y)}=\frac{P(S \& Y)}{P(Y)}=\frac{.69726719}{.69812954}=.99876477$

Example: Probability

LVelociraptor safe windows?	Survived Velociraptor Attacks (S)	Devoured by Velociraptors (D)	Total
Yes (Y)	412,368	510	412,878
No (N)	16,001	162,527	178,528
Total	428,369	163,037	591,406

- The probability a randomly selected participant survived the Velociraptor attacks given they had Velociraptor safe windows:
- $\widehat{P(S \mid Y)}=\frac{\text { number of } S \& Y \text { observations }}{\text { total } n u m b e r ~ o f ~} Y$ observations $=$ $\frac{412,368}{412,878}=.99876477$

Example: Probability

- The probability a randomly selected participant survived the Velociraptor attacks given they had Velociraptor safe windows:
Proof:
- $P(S \mid Y)=\frac{P(S \cap Y)}{P(Y)}=\frac{\left(\frac{\text { number of } S \& Y \text { observations }}{\text { total number of observations }}\right)}{\left(\frac{\text { number of } Y \text { observations }}{\text { total number of observations }}\right)}$
$=\left(\frac{\text { number of } S \& Y \text { observations }}{\text { total number of observations }}\right)\left(\frac{\text { total number of observations }}{\text { number of } Y \text { observations }}\right)$

$$
=\frac{\text { number of } S \& Y \text { observations }}{\text { total number of } Y \text { observations }}
$$

Example: Probability

LVelociraptor safe windows?	Survived Velociraptor Attacks (S)	Devoured by Velociraptors (D)	Total
Yes (Y)	412,368	510	412,878
No (N)	16,001	162,527	178,528
Total	428,369	163,037	591,406

- The probability a randomly selected participant survived the Velociraptor attacks and had Velociraptor safe windows:
- Let's try the formula:
- $\mathrm{P}(\overline{\mathrm{Y} \cap} S)=\mathrm{P}(\mathrm{Y}) * \mathrm{P}(\mathrm{S} \mid \mathrm{Y})$

$$
\begin{aligned}
& =.69812954 * .998764777 \\
& =.69726719
\end{aligned}
$$

Example: Probability

LVelociraptor safe windows?	Survived Velociraptor Attacks (S)	Devoured by Velociraptors (D)	Total
Yes (Y)	412,368	510	412,878
No (N)	16,001	162,527	178,528
Total	428,369	163,037	591,406

- Now, let's think about a word problem.
- Let's say Velociraptors came back, maybe there was a cryogenically frozen one that thawed out. Anyway, would it be worth getting the Velociraptor safe windows?

Example: Probability

ŁVelociraptor safe windows?	Survived Velociraptor Attacks (S)	Devoured by Velociraptors (D)	Total
Yes (Y)	412,368	510	412,878
No (N)	16,001	162,527	178,528
Total	428,369	163,037	591,406

- At first look...
- We see that a lot more people survived the Velociraptor attacks with the Velociraptor safe windows
- We see that a lot more were devoured without the Velociraptor safe windows
- But counts can be misleading because there are far more people with the windows than without

Example: Probability

LVelociraptor safe windows?	Survived Velociraptor Attacks (S)	Devoured by Velociraptors (D)	Total
Yes (Y)	412,368	510	412,878
No (N)	16,001	162,527	178,528
Total	428,369	163,037	591,406

- We know...
- The probability we survive given we have Velociraptor save windows is

$$
P(S \mid Y)=.99876477
$$

Example: Probability

LVelociraptor safe windows?	Survived Velociraptor Attacks (S)	Devoured by Velociraptors (D)	Total
Yes (Y)	412,368	510	412,878
No (N)	16,001	162,527	178,528
Total	428,369	163,037	591,406

- We can figure out...
- The probability we survive given we don't have Velociraptor save windows is

$$
P(S \mid N)=\frac{P(S \& N)}{P(N)}=\frac{\left(\frac{16,001}{591.06)}\right.}{\left(\frac{18,528}{591,406}\right)}=.089627397
$$

Example: Probability

चVelociraptor safe windows?	Survived Velociraptor Attacks (S)	Devoured by Velociraptors (D)	Total
Yes (Y)	412,368	510	412,878
No (N)	16,001	162,527	178,528
Total	428,369	163,037	591,406

- So now we know...
- The probability we survive given we have Velociraptor save windows is

$$
P(S \mid Y)=.99876477
$$

- The probability we survive given we don't have Velociraptor save windows is

$$
P(S \mid N)=.089627397
$$

Example: Probability

LVelociraptor safe windows?	Survived Velociraptor Attacks (S)	Devoured by Velociraptors (D)	Total
Yes (Y)	412,368	510	412,878
No (N)	16,001	162,527	178,528
Total	428,369	163,037	591,406

- From what we know...
- $P(S \mid Y)=.99876477$
- $P(S \mid N)=.089627397$
- It is much more likely that we would survive if we bought the velociraptor safe windows - we should definitely invest in some!

Example 2: Flowers

- 9 seeds: 4 are red and 5 are white
- Choose 2 seeds at random:
- One at a time without replacement
- Without replacement means exactly what it sounds like - we don't put our first choice back
- In other words, think of it this way - you choose one seed, plant it and it's gone forever, and then you choose another from the sack

Example 2: Flowers

Example 2: Flowers

- The first choice is from nine seeds
- 4 are red
- 5 are white

Example 2: Flowers

- The second choice is from eight seeds because we chose one without replacement

1st choice 2nd choice

Example 2: Flowers

- The second choice is from eight seeds
- If the first was red:
-3 are red
- 5 are white

Example 2: Flowers

- The second choice is from eight seeds
- If the first was white:
- 4 are red
- 4 are white

Example 2: Flowers

- 9 seeds: 4 are red and 5 are white
- Choose 2 seeds at random without replacement

- The probability of selecting a red on our first try $P\left(\operatorname{Red}_{1}\right)=\frac{4}{9}$

Example 2: Flowers

- 9 seeds: 4 are red and 5 are white
- Choose 2 seeds at random without replacement

- The probability of selecting a white on our first try
- $P\left(\right.$ White $\left._{1}\right)=\frac{5}{9}$

Example 2: Flowers

- The probability of selecting a red on our second try given we got a red on our first try
- We started with nine seeds and we selected one without replacement, so now we have eight seeds
- We started with four red seeds and we selected a red on our first try, so now we have three red seeds

$$
P\left(\operatorname{Red}_{2} \mid \operatorname{Red}_{1}\right)=\frac{3}{8}
$$

Example 2: Flowers

- The probability of selecting a red on our second try given we got a red on our first try
- We started with nine seeds and we selected one without replacement, so now we have eight seeds
- We started with five white seeds and we selected a red on our first try, so we still have five white seeds

$$
P\left(\text { White }_{2} \mid \text { Red }_{1}\right)=\frac{5}{8}
$$

Example 2: Flowers

- The probability of selecting a red on our second try given we got a red on our first try
- We started with nine seeds and we selected one without replacement, so now we have eight seeds
- We started with four red seeds and we selected a white on our first try, so we still have four red seeds

$$
P\left(\text { Red }_{2} \mid \text { White }_{1}\right)=\frac{4}{8}
$$

Example 2: Flowers

- The probability of selecting a red on our second try given we got a red on our first try
- We started with nine seeds and we selected one without replacement, so now we have eight seeds
- We started with five white seeds and we selected a white on our first try, so now we have four white seeds

$$
P\left(\text { White }_{2} \mid \text { White }_{1}\right)=\frac{4}{8}
$$

Example 2: Flowers

Example 2: Flowers

1st choice
 2nd choice

Example 2: Flowers

- To find 'and' probabilities we just multiply across the branches
- Remember $\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) * \mathrm{P}(\mathrm{B} \mid \mathrm{A})$
- The probability of choosing two red seeds in a row i.e. a red first and a red second

$$
\begin{gathered}
P\left(R_{1} \cap R_{2}\right)=P\left(R_{1}\right) * P\left(R_{2} \mid R_{1}\right) \\
=\left(\frac{4}{9}\right) *\left(\frac{3}{8}\right)=\left(\frac{1}{6}\right)
\end{gathered}
$$

Example 2: Flowers

- To find 'and' probabilities we just multiply across the branches
- Remember $\mathrm{P}(\mathrm{A} \cap B)=\mathrm{P}(\mathrm{A}) * \mathrm{P}(\mathrm{B} \mid \mathrm{A})$
- The probability of choosing a red seed first, and then a white seed second

$$
\begin{gathered}
P\left(R_{1} \bigcap W_{2}\right)=P\left(R_{1}\right) * P\left(W_{2} \mid R_{1}\right) \\
=\left(\frac{4}{9}\right) *\left(\frac{5}{8}\right)=\left(\frac{5}{18}\right)
\end{gathered}
$$

Example 2: Flowers

- To find 'and' probabilities we just multiply across the branches
- Remember $\mathrm{P}(\mathrm{A} \cap B)=\mathrm{P}(\mathrm{A}) * \mathrm{P}(\mathrm{B} \mid \mathrm{A})$
- The probability of choosing a white seed first, and then a red seed

$$
\begin{gathered}
P\left(W_{1} \bigcap R_{2}\right)=P\left(W_{1}\right) * P\left(R_{2} \mid W_{1}\right) \\
=\left(\frac{5}{9}\right) *\left(\frac{4}{8}\right)=\left(\frac{5}{18}\right)
\end{gathered}
$$

Example 2: Flowers

- To find 'and' probabilities we just multiply across the branches
- Remember $\mathrm{P}(\mathrm{A} \cap B)=\mathrm{P}(\mathrm{A}) * \mathrm{P}(\mathrm{B} \mid \mathrm{A})$
- The probability of choosing two white seeds in a row

$$
\begin{gathered}
P(W 1 \text { and } W 2)=P\left(W_{1}\right) * P\left(W_{2} \mid W_{1}\right) \\
=\left(\frac{5}{9}\right) *\left(\frac{4}{8}\right)=\left(\frac{5}{18}\right)
\end{gathered}
$$

Example 2: Flowers

- To find 'and' probabilities we just multiply across the branches
- Remember $\mathrm{P}(\mathrm{A} \cap B)=\mathrm{P}(\mathrm{A}) * \mathrm{P}(\mathrm{B} \mid \mathrm{A})$
- The probability of choosing a white and a red, regardless of order

$$
\begin{aligned}
& P(1 \text { red } \& 1 \text { white })=P\left(R_{1} \& W_{2} \text { or } W_{1} \& R_{2}\right) \\
& \quad=P\left(R_{1} \& W_{2}\right)+P\left(W_{1} \& R_{2}\right) \\
& \quad=\left(\frac{5}{18}\right)+\left(\frac{5}{18}\right)=\left(\frac{10}{18}\right)=\left(\frac{5}{9}\right)
\end{aligned}
$$

Probability

Type	Description
Conditional Probability ('A given \mathbf{B}^{\prime})	$P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
And Probability ('A and \mathbf{B}^{\prime})	$\mathrm{P}(A \cap B)=P(\mathrm{~A}) * \mathrm{P}(\mathrm{B} \mid \mathrm{A})$
	$=\mathrm{P}(\mathrm{B}) * \mathrm{P}(\mathrm{A} \mid B)$

